Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 676
Filtrar
1.
J Cell Mol Med ; 28(8): e18356, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38668995

RESUMO

Trichospira verticillata is an annual herb that belongs to the family Asteraceae. Trichospira verticillata extract (TVE) elicits anti-plasmodial activity; however, there has been no detailed report about its anti-inflammatory effects and molecular mechanisms. In addition, herbal plants exhibit anti-inflammatory effects by suppressing the NLRP3 inflammasome. Therefore, the primary goal of this study was to examine the effects of TVE on NLRP3 inflammasome activation by measuring interleukin-1ß (IL-1ß) secretion. We treated lipopolysaccharides (LPS)-primed J774A.1 and THP-1 cells with TVE, which attenuated NLRP3 inflammasome activation. Notably, TVE did not affect nuclear factor-kappa B (NF-κB) signalling or intracellular reactive oxygen species (ROS) production and potassium efflux, suggesting that it inactivates the NLRP3 inflammasome via other mechanisms. Moreover, TVE suppressed the formation of apoptosis-associated speck-like protein (ASC) speck and oligomerization. Immunoprecipitation data revealed that TVE reduced the binding of NLRP3 to NIMA-related kinase 7 (NEK7), resulting in reduced ASC oligomerization and speck formation. Moreover, TVE alleviated neutrophilic asthma (NA) symptoms in mice. This study demonstrates that TVE modulates the binding of NLPR3 to NEK7, thereby reporting novel insights into the mechanism by which TVE inhibits NLRP3 inflammasome. These findings suggest TVE as a potential therapeutic of NLRP3 inflammasome-mediated diseases, particularly NA.


Assuntos
Anti-Inflamatórios , Asma , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Neutrófilos , Espécies Reativas de Oxigênio , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Inflamassomos/metabolismo , Asma/metabolismo , Asma/tratamento farmacológico , Asma/imunologia , Asma/patologia , Camundongos , Anti-Inflamatórios/farmacologia , Humanos , Neutrófilos/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Espécies Reativas de Oxigênio/metabolismo , Lipopolissacarídeos , Quinases Relacionadas a NIMA/metabolismo , Interleucina-1beta/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Modelos Animais de Doenças , Extratos Vegetais/farmacologia , Células THP-1
2.
Sci Rep ; 14(1): 8762, 2024 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627442

RESUMO

Metastatic colorectal cancer (CRC) is still in need of effective treatments. This study applies a holistic approach to propose new targets for treatment of primary and liver metastatic CRC and investigates their therapeutic potential in-vitro. An integrative analysis of primary and metastatic CRC samples was implemented for alternative target and treatment proposals. Integrated microarray samples were grouped based on a co-expression network analysis. Significant gene modules correlated with primary CRC and metastatic phenotypes were identified. Network clustering and pathway enrichments were applied to gene modules to prioritize potential targets, which were shortlisted by independent validation. Finally, drug-target interaction search led to three agents for primary and liver metastatic CRC phenotypes. Hesperadin and BAY-1217389 suppress colony formation over a 14-day period, with Hesperadin showing additional efficacy in reducing cell viability within 48 h. As both candidates target the G2/M phase proteins NEK2 or TTK, we confirmed their anti-proliferative properties by Ki-67 staining. Hesperadinin particular arrested the cell cycle at the G2/M phase. IL-29A treatment reduced migration and invasion capacities of TGF-ß induced metastatic cell lines. In addition, this anti-metastatic treatment attenuated TGF-ß dependent mesenchymal transition. Network analysis suggests IL-29A induces the JAK/STAT pathway in a preventive manner.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Indóis , Neoplasias Hepáticas , Neoplasias Retais , Sulfonamidas , Humanos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Transcriptoma , Janus Quinases/metabolismo , Transdução de Sinais , Fatores de Transcrição STAT/metabolismo , Neoplasias do Colo/genética , Neoplasias Retais/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/secundário , Fator de Crescimento Transformador beta/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Quinases Relacionadas a NIMA/genética
3.
Cancer Res Commun ; 4(4): 1024-1040, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592451

RESUMO

Non-Hodgkin lymphoma (NHL) is a common cancer in both men and women and represents a significant cancer burden worldwide. Primary effusion lymphoma (PEL) is a subtype of NHL infected with Kaposi sarcoma-associated herpesvirus (KSHV). PEL is an aggressive and lethal cancer with no current standard of care, owing largely to its propensity to develop resistance to current chemotherapeutic regimens. Here, we report a reliance of KSHV-positive PEL on the mitotic kinase, NEK2, for survival. Inhibition of NEK2 with the inhibitor, JH295, resulted in caspase 3-mediated apoptotic cell death of PEL. Furthermore, NEK2 inhibition significantly prolonged survival and reduced tumor burden in a PEL mouse model. We also demonstrate that the ABC transporter proteins, MDR1 and MRP, are most active in PEL and that inhibition of NEK2 in PEL reduced the expression and activity of these ABC transporter proteins, which are known to mediate drug resistance in cancer. Finally, we report that JH295 treatment sensitized lymphomas to other chemotherapeutic agents such as rapamycin, resulting in enhanced cancer cell death. Overall, these data offer important insight into the mechanisms underlying PEL survival and drug resistance, and suggest that NEK2 is a viable therapeutic target for PEL. SIGNIFICANCE: The mitotic kinase, NEK2, is important for the survival of KSHV-positive PEL. NEK2 inhibition resulted in PEL apoptosis and reduced tumor burden in a mouse model. NEK2 inhibition also reduced drug resistance.


Assuntos
Herpesvirus Humano 8 , Linfoma não Hodgkin , Linfoma de Efusão Primária , Masculino , Animais , Camundongos , Humanos , Feminino , Linfoma de Efusão Primária/tratamento farmacológico , Transportadores de Cassetes de Ligação de ATP , Agressão , Modelos Animais de Doenças , Quinases Relacionadas a NIMA/genética
4.
Cells ; 13(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38534317

RESUMO

Mitochondria provide energy for all cellular processes, including reactions associated with cell cycle progression, DNA damage repair, and cilia formation. Moreover, mitochondria participate in cell fate decisions between death and survival. Nek family members have already been implicated in DNA damage response, cilia formation, cell death, and cell cycle control. Here, we discuss the role of several Nek family members, namely Nek1, Nek4, Nek5, Nek6, and Nek10, which are not exclusively dedicated to cell cycle-related functions, in controlling mitochondrial functions. Specifically, we review the function of these Neks in mitochondrial respiration and dynamics, mtDNA maintenance, stress response, and cell death. Finally, we discuss the interplay of other cell cycle kinases in mitochondrial function and vice versa. Nek1, Nek5, and Nek6 are connected to the stress response, including ROS control, mtDNA repair, autophagy, and apoptosis. Nek4, in turn, seems to be related to mitochondrial dynamics, while Nek10 is involved with mitochondrial metabolism. Here, we propose that the participation of Neks in mitochondrial roles is a new functional axis for the Nek family.


Assuntos
Mitocôndrias , Proteínas Serina-Treonina Quinases , Quinases Relacionadas a NIMA/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Mitocôndrias/metabolismo , Homeostase , DNA Mitocondrial
5.
Brain Res ; 1831: 148828, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38408556

RESUMO

Intracerebral hemorrhage (ICH) induces severe neurological damage, and its progression is driven by METTL3. This study aimed to investigate the role of METTL3 in ICH via in vitro experiments. For this purpose, HT-22 cells were treated with hemin to mimic ICH in vitro, followed by evaluating cell pyroptosis using flow cytometry, lactic dehydrogenase release analysis, enzyme-linked immunosorbent assay, and western blotting. Moreover, N6-methyl adenosine (m6A) methylation of NEK7 was assessed using methylated RNA immunoprecipitation, RNA immunoprecipitation, dual-luciferase reporter assay, and quantitative real-time polymerase chain reaction. Results indicated that knockdown of METTL3 inhibited hemin-induced pyroptosis and suppressed m6A methylation of NEK7 due to METTL3 downregulation, reducing NEK7 mRNA stability. The effects on METTL3-induced cell pyroptosis were abrogated by overexpressing NEK7, while IGF2BP2 increased NEK7 expression. Similarly, IGF2BP2 silence downregulated NEK7 expression mediated by METTL3. In conclusion, silencing of METTL3 inhibited hemin-induced HT-22 cell pyroptosis by suppressing m6A methylation of NEK7, which was recognized by IGF2BP2. These findings are envisaged to identify a novel therapeutic strategy for ICH.


Assuntos
Adenina , Hemorragia Cerebral , Piroptose , Animais , Camundongos , Adenosina/metabolismo , Hemorragia Cerebral/induzido quimicamente , Hemorragia Cerebral/genética , Hemorragia Cerebral/metabolismo , Hemina/farmacologia , Metilação , Metiltransferases , Quinases Relacionadas a NIMA/genética , Piroptose/genética , Piroptose/fisiologia , RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
6.
Nat Commun ; 15(1): 1164, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326375

RESUMO

The NACHT-, leucine-rich-repeat-, and pyrin domain-containing protein 3 (NLRP3) is a critical intracellular inflammasome sensor and an important clinical target against inflammation-driven human diseases. Recent studies have elucidated its transition from a closed cage to an activated disk-like inflammasome, but the intermediate activation mechanism remains elusive. Here we report the cryo-electron microscopy structure of NLRP3, which forms an open octamer and undergoes a ~ 90° hinge rotation at the NACHT domain. Mutations on open octamer's interfaces reduce IL-1ß signaling, highlighting its essential role in NLRP3 activation/inflammasome assembly. The centrosomal NIMA-related kinase 7 (NEK7) disrupts large NLRP3 oligomers and forms NEK7/NLRP3 monomers/dimers which is a critical step preceding the assembly of the disk-like inflammasome. These data demonstrate an oligomeric cooperative activation of NLRP3 and provide insight into its inflammasome assembly mechanism.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Microscopia Crioeletrônica , Quinases Relacionadas a NIMA/genética , Quinases Relacionadas a NIMA/metabolismo , Proteínas
7.
Autoimmunity ; 57(1): 2319202, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38389178

RESUMO

BACKGROUNDS: The role of O-GlcNAc transferase (OGT)-induced O-linked N-acetylglucosaminylation (O-GlcNAcylation) has been reported in multiple human diseases. However, its specific functions in osteoarthritis (OA) progression remain undetermined. OBJECTIVE: This study focused on the target proteins of OGT-induced O-GlcNAcylation in OA and the specific functional mechanism. METHODS: The levels of total O-GlcNAc and OGT were measured in both in vitro and in vivo OA models using western blot. The effects of OGT knockout on OA progression were detected through Safranin O staining, immunohistochemical staining and OARSI score evaluation. The effects of OGT silencing on LPS-induced chondrocyte injury were assessed by performing loss-of function assays. Co-immunoprecipitation (co-IP) was conducted to verify the effect of OGT-induced O-GlcNAcylation on the interaction between NEK7 and NLRP3. The role of OGT in modulating the O-GlcNAcylation and phosphorylation levels of NEK7 was analysed using western blot. RESULTS: The OGT-indued O-GlcNAcylation level was increased in both in vitro and in vivo OA models. Knockout of OGT mitigated OA progression in model mice. Additionally, silencing of OGT suppressed LPS-induced chondrocyte pyroptosis. Moreover, silencing of OGT inhibited the O-GlcNAcylation and enhanced the phosphorylation of NEK7 at S260 site, thereby blocking the binding of NEK7 with NLRP3. CONCLUSION: OGT-induced NEK7 O-GlcNAcylation promotes OA progression by promoting chondrocyte pyroptosis via the suppressing interaction between NEK7 and NLRP3.


Assuntos
N-Acetilglucosaminiltransferases , Proteína 3 que Contém Domínio de Pirina da Família NLR , Osteoartrite , Humanos , Camundongos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Lipopolissacarídeos , Camundongos Knockout , Quinases Relacionadas a NIMA/genética
8.
Cell Death Dis ; 15(1): 86, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267403

RESUMO

The NLRP3 inflammasome plays an important role in protecting the host from infection and aseptic inflammation, and its regulatory mechanism is not completely understood. Dysregulation of NLRP3 can cause diverse inflammatory diseases. HECTD3 is a E3 ubiquitin ligase of the HECT family that has been reported to participate in autoimmune and infectious diseases. However, the relationship between HECTD3 and the NLRP3 inflammasome has not been well studied. Herein, we show that HECTD3 blocks the interaction between NEK7 and NLRP3 to inhibit NLRP3 inflammasome assembly and activation. In BMDMs, Hectd3 deficiency promotes the assembly and activation of NLRP3 inflammasome and the secretion of IL-1ß, while the overexpression of HECTD3 inhibits these processes. Unexpectedly, HECTD3 functions in an E3 activity independent manner. Mechanically, the DOC domain of HECTD3 interacts with NACHT/LRR domain of NLRP3, which blocks NLRP3-NEK7 interaction and NLRP3 oligomerization. Furthermore, HECTD3 inhibits monosodium urate crystals (MSU)-induced gouty arthritis, a NLRP3-related disease. Thus, we reveal a novel regulatory mechanism of NLRP3 by HECTD3 and suggest HECTD3 could be a potential therapeutic target for NLRP3-dependent pathologies.


Assuntos
Artrite Gotosa , Inflamassomos , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Inflamação , Interleucina-1beta , Quinases Relacionadas a NIMA/genética
9.
Oncogene ; 43(8): 578-593, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38182898

RESUMO

YAP activation in cancer is linked to poor outcomes, making it an attractive therapeutic target. Previous research focused on blocking the interaction of YAP with TEAD transcription factors. Here, we took a different approach by disrupting YAP's binding to the transcription factor B-MYB using MY-COMP, a fragment of B-MYB containing the YAP binding domain fused to a nuclear localization signal. MY-COMP induced cell cycle defects, nuclear abnormalities, and polyploidization. In an AKT and YAP-driven liver cancer model, MY-COMP significantly reduced liver tumorigenesis, highlighting the importance of the YAP-B-MYB interaction in tumor development. MY-COMP also perturbed the cell cycle progression of YAP-dependent uveal melanoma cells but not of YAP-independent cutaneous melanoma cell lines. It counteracted YAP-dependent expression of MMB-regulated cell cycle genes, explaining the observed effects. We also identified NIMA-related kinase (NEK2) as a downstream target of YAP and B-MYB, promoting YAP-driven transformation by facilitating centrosome clustering and inhibiting multipolar mitosis.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Quinases Relacionadas a NIMA/genética , Quinases Relacionadas a NIMA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP
10.
Int J Cancer ; 154(9): 1652-1668, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38180088

RESUMO

Patients with myelodysplastic neoplasms (MDS) are classified according to the risk of acute myeloid leukemia transformation. Some lower-risk MDS patients (LR-MDS) progress rapidly despite expected good prognosis. Using diagnostic samples, we aimed to uncover the mechanisms of this accelerated progression at the transcriptome level. RNAseq was performed on CD34+ ribodepleted RNA samples from 53 LR-MDS patients without accelerated progression (stMDS) and 8 who progressed within 20 months (prMDS); 845 genes were differentially expressed (ІlogFCІ > 1, FDR < 0.01) between these groups. stMDS CD34+ cells exhibited transcriptional signatures of actively cycling, megakaryocyte/erythrocyte lineage-primed progenitors, with upregulation of cell cycle checkpoints and stress pathways, which presumably form a tumor-suppressing barrier. Conversely, cell cycle, DNA damage response (DDR) and energy metabolism-related pathways were downregulated in prMDS samples, whereas cell adhesion processes were upregulated. Also, prMDS samples showed high levels of aberrant splicing and global lncRNA expression that may contribute to the attenuation of DDR pathways. We observed overexpression of multiple oncogenes and diminished differentiation in prMDS; the expression of ZEB1 and NEK3, genes not previously associated with MDS prognosis, might serve as potential biomarkers for LR-MDS progression. Our 19-gene DDR signature showed a significant predictive power for LR-MDS progression. In validation samples (stMDS = 3, prMDS = 4), the key markers and signatures retained their significance. Collectively, accelerated progression of LR-MDS appears to be associated with transcriptome patterns of a quiescent-like cell state, reduced lineage differentiation and suppressed DDR, inherent to CD34+ cells. The attenuation of DDR-related gene-expression signature may refine risk assessment in LR-MDS patients.


Assuntos
Síndromes Mielodisplásicas , Neoplasias , Humanos , Transcriptoma , Adesão Celular , Síndromes Mielodisplásicas/genética , Ciclo Celular , Reparo do DNA , Quinases Relacionadas a NIMA/genética , Quinases Relacionadas a NIMA/metabolismo
11.
Mol Cancer Ther ; 23(3): 316-329, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-37816504

RESUMO

Expression of the serine/threonine kinase never in mitosis gene A (NIMA)-related kinase 2 (NEK2) is essential for entry into mitosis via its role in facilitating centrosome separation. Its overactivity can lead to tumorigenesis and drug resistance through the activation of several oncogenic pathways, including AKT. Although the cancer-enabling activities of NEK2 are documented in many malignancies, including correlations with poor survival in myeloma, breast, and non-small cell lung cancer, little is known about the role of NEK2 in lymphoma. Here, in tumors from patients with diffuse large B-cell lymphoma (DLBCL), the most common, aggressive non-Hodgkin lymphoma, we found a high abundance of NEK2 mRNA and protein associated with an inferior overall survival. Using our recently developed NEK2 inhibitor, NBI-961, we discovered that DLBCL cell lines and patient-derived cells exhibit a dependency on NEK2 for their viability. This compromised cell fitness was directly attributable to efficient NEK2 inhibition and proteasomal degradation by NBI-961. In a subset of particularly sensitive DLBCL cells, NBI-961 induced G2/mitosis arrest and apoptosis. In contrast, an existing indirect NEK2 inhibitor, INH154, did not prevent NEK2 autophosphorylation, induce NEK2 proteasomal degradation, or affect cell viability. Global proteomics and phospho-proteomics revealed that NEK2 orchestrates cell-cycle and apoptotic pathways through regulation of both known and new signaling molecules. We show the loss of NEK2-sensitized DLBCL to the chemotherapy agents, doxorubicin and vincristine, and effectively suppressed tumor growth in mice. These studies establish the oncogenic activity of NEK2 in DLBCL and set the foundation for development of anti-NEK2 therapeutic strategies in this frequently refractory and relapse-prone cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Linfoma Difuso de Grandes Células B , Linfoma , Humanos , Animais , Camundongos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Quinases Relacionadas a NIMA/genética , Linhagem Celular Tumoral , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética
12.
Cell Metab ; 36(1): 159-175.e8, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38113887

RESUMO

The gut microbiome has been found to play a crucial role in the treatment of multiple myeloma (MM), which is still considered incurable due to drug resistance. In previous studies, we demonstrated that intestinal nitrogen-recycling bacteria are enriched in patients with MM. However, their role in MM relapse remains unclear. This study highlights the specific enrichment of Citrobacter freundii (C. freundii) in patients with relapsed MM. Through fecal microbial transplantation experiments, we demonstrate that C. freundii plays a critical role in inducing drug resistance in MM by increasing levels of circulating ammonium. The ammonium enters MM cells through the transmembrane channel protein SLC12A2, promoting chromosomal instability and drug resistance by stabilizing the NEK2 protein. We show that furosemide sodium, a loop diuretic, downregulates SLC12A2, thereby inhibiting ammonium uptake by MM cells and improving progression-free survival and curative effect scores. These findings provide new therapeutic targets and strategies for the intervention of MM progression and drug resistance.


Assuntos
Microbioma Gastrointestinal , Mieloma Múltiplo , Humanos , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Bortezomib/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Linhagem Celular Tumoral , Proteínas de Membrana/metabolismo , Quinases Relacionadas a NIMA/metabolismo , Quinases Relacionadas a NIMA/uso terapêutico , Membro 2 da Família 12 de Carreador de Soluto/farmacologia
13.
Mol Cell ; 83(24): 4570-4585.e7, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38092000

RESUMO

The nucleotide-binding domain (NBD), leucine-rich repeat (LRR), and pyrin domain (PYD)-containing protein 3 (NLRP3) inflammasome is a critical mediator of the innate immune response. How NLRP3 responds to stimuli and initiates the assembly of the NLRP3 inflammasome is not fully understood. Here, we found that a cellular metabolite, palmitate, facilitates NLRP3 activation by enhancing its S-palmitoylation, in synergy with lipopolysaccharide stimulation. NLRP3 is post-translationally palmitoylated by zinc-finger and aspartate-histidine-histidine-cysteine 5 (ZDHHC5) at the LRR domain, which promotes NLRP3 inflammasome assembly and activation. Silencing ZDHHC5 blocks NLRP3 oligomerization, NLRP3-NEK7 interaction, and formation of large intracellular ASC aggregates, leading to abrogation of caspase-1 activation, IL-1ß/18 release, and GSDMD cleavage, both in human cells and in mice. ABHD17A depalmitoylates NLRP3, and one human-heritable disease-associated mutation in NLRP3 was found to be associated with defective ABHD17A binding and hyper-palmitoylation. Furthermore, Zdhhc5-/- mice showed defective NLRP3 inflammasome activation in vivo. Taken together, our data reveal an endogenous mechanism of inflammasome assembly and activation and suggest NLRP3 palmitoylation as a potential target for the treatment of NLRP3 inflammasome-driven diseases.


Assuntos
Aciltransferases , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Humanos , Camundongos , Caspase 1/metabolismo , Histidina/metabolismo , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Lipoilação , Macrófagos/metabolismo , Quinases Relacionadas a NIMA/genética , Quinases Relacionadas a NIMA/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo
14.
Cell Rep Med ; 4(12): 101310, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38118409

RESUMO

Excessive inflammation caused by abnormal activation of the NLRP3 inflammasome contributes to the pathogenesis of multiple human diseases, but clinical drugs targeting the NLRP3 inflammasome are still not available. In this study, we identify entrectinib (ENB), a US Food and Drug Administration (FDA)-approved anti-cancer agent, as a target inhibitor of the NLRP3 inflammasome to treat related diseases. ENB specifically blocks NLRP3 without affecting activation of other inflammasomes. Furthermore, we demonstrate that ENB directly binds to arginine 121 (R121) of NEK7 and blocks the interaction between NEK7 and NLRP3, thereby inhibiting inflammasome assembly and activation. In vivo studies show that ENB has a significant ameliorative effect on mouse models of NLRP3 inflammasome-related diseases, including lipopolysaccharide (LPS)-induced systemic inflammation, monosodium urate (MSU)-induced peritonitis, and high-fat diet (HFD)-induced type 2 diabetes (T2D). These data show that ENB is a targeted inhibitor of NEK7 with strong anti-NLRP3 inflammasome activity, making it a potential candidate drug for the treatment of inflammasome-related diseases.


Assuntos
Diabetes Mellitus Tipo 2 , Inflamassomos , Animais , Camundongos , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Quinases Relacionadas a NIMA/metabolismo , Inflamação/tratamento farmacológico
15.
Cell Mol Biol (Noisy-le-grand) ; 69(10): 276-281, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37953592

RESUMO

Cervical cancer is a significant global health burden, necessitating a comprehensive understanding of its underlying molecular mechanisms to improve diagnostic and therapeutic strategies. In this study, we conducted an in-depth bioinformatics analysis of cervical cancer using a high-throughput microarray dataset, GSE9750. Through robust screening and selection, we identified 1633 differentially expressed genes (DEGs) associated with cervical cancer. Enrichment analysis revealed crucial pathways and processes, such as DNA replication, cell cycle, and epithelial cell differentiation, implicated in cancer development. Additionally, we discovered key genes, including NEK2, AURKA, FOXM1, CDCA8, and CDC25A, linked to these pathways, which also showed significant differences in expression levels between various clinical characteristics. Our findings shed light on potential molecular targets for therapeutic interventions and contribute to the growing body of knowledge in cervical cancer research. This integrative bioinformatics approach serves as a valuable resource for future studies aiming to unravel the intricate molecular landscape of cervical cancer.


Assuntos
Transcriptoma , Neoplasias do Colo do Útero , Feminino , Humanos , Transcriptoma/genética , Neoplasias do Colo do Útero/genética , Perfilação da Expressão Gênica , Análise em Microsséries , Ciclo Celular , Biologia Computacional , Quinases Relacionadas a NIMA/genética
16.
Cell Rep Med ; 4(10): 101237, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37852178

RESUMO

In their article, Cheng et al.1 reveal that NEK2 loss reshapes the tumor microenvironment, reducing tumor-associated macrophages and decreasing T cell exhaustion. They show that this ultimately favors the immune system's anti-cancer response in multiple myeloma.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Quinases Relacionadas a NIMA/genética , Proliferação de Células , Microambiente Tumoral
17.
PLoS One ; 18(10): e0293283, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37903144

RESUMO

The mitotic regulator, Aurora kinase B (AURKB), is frequently overexpressed in malignancy and is a target for therapeutic intervention. The compound, LXY18, is a potent, orally available small molecule that inhibits the proper localization of AURKB during late mitosis, without affecting its kinase activity. In this study, we demonstrate that LXY18 elicits apoptosis in cancer cells derived from various indications, but not in non-transformed cell lines. The apoptosis is p53-independent, triggered by a prolonged mitotic arrest and occurs predominantly in mitosis. Some additional cells succumb post-mitotic slippage. We also demonstrate that cancer cell lines refractory to AURKB kinase inhibitors are sensitive to LXY18. The mitotic proteins MKLP2, NEK6, NEK7 and NEK9 are known regulators of AURKB localization during the onset of anaphase. LXY18 fails to inhibit the catalytic activity of these AURKB localization factors. Overall, our findings suggest a novel activity for LXY18 that produces a prolonged mitotic arrest and lethality in cancer cells, leaving non-transformed cells healthy. This new activity suggests that the compound may be a promising drug candidate for cancer treatment and that it can also be used as a tool compound to further dissect the regulatory network controlling AURKB localization.


Assuntos
Aurora Quinase A , Neoplasias , Humanos , Aurora Quinase B/genética , Aurora Quinase B/metabolismo , Morte Celular , Mitose , Neoplasias/tratamento farmacológico , Quinases Relacionadas a NIMA
18.
Mol Cancer ; 22(1): 146, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37667354

RESUMO

Multidrug resistance renders treatment failure in a large proportion of head and neck squamous cell carcinoma (HNSCC) patients that require multimodal therapy involving chemotherapy in conjunction with surgery and/or radiotherapy. Molecular events conferring chemoresistance remain unclear. Through transcriptome datamining, 28 genes were subjected to pharmacological and siRNA rescue functional assays on 12 strains of chemoresistant cell lines each against cisplatin, 5-fluorouracil (5FU), paclitaxel (PTX) and docetaxel (DTX). Ten multidrug chemoresistance genes (TOP2A, DNMT1, INHBA, CXCL8, NEK2, FOXO6, VIM, FOXM1B, NR3C1 and BIRC5) were identified. Of these, four genes (TOP2A, DNMT1, INHBA and NEK2) were upregulated in an HNSCC patient cohort (n = 221). Silencing NEK2 abrogated chemoresistance in all drug-resistant cell strains. INHBA and TOP2A were found to confer chemoresistance in majority of the drug-resistant cell strains whereas DNMT1 showed heterogeneous results. Pan-cancer Kaplan-Meier survival analysis on 21 human cancer types revealed significant prognostic values for INHBA and NEK2 in at least 16 cancer types. Drug library screens identified two compounds (Sirodesmin A and Carfilzomib) targeting both INHBA and NEK2 and re-sensitised cisplatin-resistant cells. We have provided the first evidence for NEK2 and INHBA in conferring chemoresistance in HNSCC cells and siRNA gene silencing of either gene abrogated multidrug chemoresistance. The two existing compounds could be repurposed to counteract cisplatin chemoresistance in HNSCC. This finding may lead to novel personalised biomarker-linked therapeutics that can prevent and/or abrogate chemoresistance in HNSCC and other tumour types with elevated NEK2 and INHBA expression. Further investigation is necessary to delineate their signalling mechanisms in tumour chemoresistance.


Assuntos
Cisplatino , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Cisplatino/farmacologia , Transdução de Sinais , Linhagem Celular , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/genética , Fatores de Transcrição Forkhead , Quinases Relacionadas a NIMA/genética
19.
Cell Commun Signal ; 21(1): 209, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37596667

RESUMO

Radiotherapy and chemotherapy remain the mainstay of treatment for colorectal cancer (CRC), although their efficacy is limited. A detailed understanding of the molecular mechanisms underlying CRC progression could lead to the development of new therapeutic strategies. Although it has been established that MYC signaling is dysregulated in various human cancers, direct targeting MYC remains challenging due to its "undruggable" protein structure. Post-translational modification of proteins can affect their stability, activation, and subcellular localization. Hence, targeting the post-translational modification of MYC represents a promising approach to disrupting MYC signaling. Herein, we revealed that NEK8 positively regulates CRC progression by phosphorylating c-MYC protein at serine 405, which exhibited enhanced stability via polyubiquitination. Our findings shed light on the role of NEK8/MYC signaling in CRC progression, offering a novel and helpful target for colorectal cancer treatment. Video Abstract.


Assuntos
Neoplasias Colorretais , Quinases Relacionadas a NIMA , Proteínas Proto-Oncogênicas c-myc , Humanos , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-myc/genética , Serina , Transdução de Sinais
20.
Commun Biol ; 6(1): 825, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37558831

RESUMO

Aberrant DNA methylation accompanies genetic alterations during oncogenesis and tumour homeostasis and contributes to the transcriptional deregulation of key signalling pathways in cancer. Despite increasing efforts in DNA methylation profiling of cancer patients, there is still a lack of epigenetic biomarkers to predict treatment efficacy. To address this, we analyse 721 cancer cell lines across 22 cancer types treated with 453 anti-cancer compounds. We systematically detect the predictive component of DNA methylation in the context of transcriptional and mutational patterns, i.e., in total 19 DNA methylation biomarkers across 17 drugs and five cancer types. DNA methylation constitutes drug sensitivity biomarkers by mediating the expression of proximal genes, thereby enhancing biological signals across multi-omics data modalities. Our method reproduces anticipated associations, and in addition, we find that the NEK9 promoter hypermethylation may confer sensitivity to the NEDD8-activating enzyme (NAE) inhibitor pevonedistat in melanoma through downregulation of NEK9. In summary, we envision that epigenomics will refine existing patient stratification, thus empowering the next generation of precision oncology.


Assuntos
Epigenômica , Melanoma , Humanos , Medicina de Precisão , Melanoma/genética , Metilação de DNA , Linhagem Celular Tumoral , Epigênese Genética , Quinases Relacionadas a NIMA/genética , Quinases Relacionadas a NIMA/metabolismo , Quinases Relacionadas a NIMA/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...